Abstract

In our quest to make functional devices smaller, the thickness of polymer films has reached values even smaller than the diameter of the unperturbed mole- cule. Many experimental studies have been devoted to the determination of the behavior of such thin films as a function of film thickness and temperature. However, despite enormous efforts over the last few decades, our understanding of the origin of some puzzling properties of such thin films is still not satisfactory and several peculiar observations remain rather mysterious. In this context, we explore the consequences of film preparation, i.e., the transition from a dilute polymer solution to the glassy state, with respect to the properties of polymers in thin films. This transition is likely to result in residual stresses arising from out- of-equilibrium chain conformations due to rapid solvent loss. Consequently, depending on thermal history and ageing time, such films exhibit significant changes even in the glassy state, which we can quantify by performing detailed studies of visco-elastic dewetting of thin polystyrene films on solid substrates. We explore relaxation times, residual stresses, and temporal changes to the stability of non-equilibrated thin films as they progress toward stable equilibrium behaviors. We present some tentative ideas on the relation between the observed atypical mechanical and relaxational behavior and the metastable states introduced by sample preparation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.