Abstract
Operator spreading, often characterized by out-of-time-order correlators (OTOCs), is one of the central concepts in quantum many-body physics. However, measuring OTOCs is experimentally challenging due to the requirement of reversing the time evolution of systems. Here we apply Floquet engineering to investigate operator spreading in a superconducting 10-qubit chain. Floquet engineering provides an effective way to tune the coupling strength between nearby qubits, which is used to demonstrate quantum walks with tunable couplings, reversed time evolution, and the measurement of OTOCs. A clear light-cone-like operator propagation is observed in the system with multiple excitations, and has a nearly equal velocity as the single-particle quantum walk. For the butterfly operator that is nonlocal (local) under the Jordan-Wigner transformation, the OTOCs show distinct behaviors with (without) a signature of information scrambling in the near integrable system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.