Abstract
We investigate both numerically and analytically the dynamics of out-of-time-order correlators (OTOCs) in a non-Hermitian kicked rotor model, addressing the scaling laws of the time dependence of OTOCs at the transition to the spontaneous $\mathcal{PT}$-symmetry breaking. In the unbroken phase of $\mathcal{PT}$ symmetry, the OTOCs increase monotonically and eventually saturate with time, demonstrating the freezing of information scrambling. Just beyond the phase transition points, the OTOCs increase in the power laws of time, with the exponent being larger than 2. Interestingly, the quadratic growth of OTOCs with time emerges when the system is far beyond the phase transition points. The above numerical findings are validated by our theoretical analysis, which provides a general framework with important implications for Floquet engineering and information scrambling in chaotic systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.