Abstract
X-ray spectroscopy of kaonic atoms provides a versatile tool to study the strong interaction at low energies via a direct observation of its influence on the ground state of kaonic hydrogen atoms. The SIDDHARTA experiment provided precise results on the energy shift and width of the kaonic hydrogen 1s state induced by the strong interaction. To enable the extraction of the antikaon-nucleon scattering lengths a0 and a1, SIDDHARTA-2 aims to determine the energy shift and width in kaonic deuterium with precisions of 30 eV and 75 eV, respectively. This measurement is aggravated by the low kaonic deuterium X-ray yield and a high background environment and will only be possible by implementing a severe upgrade on the SIDDHARTA apparatus.
Highlights
The low-energy, non-perturbative regime of quantum chromodynamics (QCD) still leaves important questions unanswered, e.g. the generation of the hadron masses
The SIDDHARTA experiment provided precise results on the energy shift and width of the kaonic hydrogen 1s state induced by the strong interaction
To enable the extraction of the antikaon-nucleon scattering lengths a0 and a1, SIDDHARTA-2 aims to determine the energy shift and width in kaonic deuterium with precisions of 30 eV and 75 eV, respectively. This measurement is aggravated by the low kaonic deuterium X-ray yield and a high background environment and will only be possible by implementing a severe upgrade on the SIDDHARTA apparatus
Summary
The low-energy, non-perturbative regime of quantum chromodynamics (QCD) still leaves important questions unanswered, e.g. the generation of the hadron masses. The SIDDHARTA experiment provided precise results on the energy shift and width of the kaonic hydrogen 1s state induced by the strong interaction. To enable the extraction of the antikaon-nucleon scattering lengths a0 and a1, SIDDHARTA-2 aims to determine the energy shift and width in kaonic deuterium with precisions of 30 eV and 75 eV, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.