Abstract
Polarization imaging is a label-free and non-invasive technique that is sensitive to microstructure and suitable for probing the microstructure of living tissues. However, obtaining deep-layer information from tissues has been a challenge for optical techniques. In this work, we used tissue optical clearing (TOC) to increase optical penetration depth and characterize the layered structures of tissue samples. Different tissue phantoms were constructed to examine changes in the polarization features of the layered structure during the TOC process. We found that depolarization and anisotropy parameters were able to distinguish between single-layer and double-layer phantoms, reflecting microstructural information from each layer. We observed changes in polarization parameter images during the TOC process and, by analyzing different regions of the images, explained the sensitivity of these parameters to double-layer structures and analyzed the influence of oblique incident illumination. Finally, we conducted TOC experiments on living skin samples, leveraging the experience gained from phantom experiments to identify the double-layer structure of the skin and extract features related to layered structures. The results show that the combination of backscattering polarization imaging and tissue optical clearing provides a powerful tool for the characterization of layered samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.