Abstract
We have exploited the principle of photoselection and the method of time-resolved small-angle X-ray scattering (SAXS) to investigate protein size and shape changes following photoactivation of photoactive yellow protein (PYP) in solution with ∼150 ps time resolution. This study partially overcomes the orientational average intrinsic to solution scattering methods and provides structural information at a higher level of detail. Photoactivation of the p-coumaric acid (pCA) chromophore in PYP produces a highly contorted, short-lived, red-shifted intermediate (pR0), and triggers prompt, protein compaction of approximately 0.3% along the direction defined by the electronic transition dipole moment of the chromophore. Contraction along this dimension is accompanied by expansion along the orthogonal directions, with the net protein volume change being approximately -0.25%. More than half the strain arising from formation of pR0 is relieved by the pR0 to pR1 structure transition (1.8 ± 0.2 ns), with the persistent strain presumably contributing to the driving force needed to generate the spectroscopically blue-shifted pB signaling state. The results reported here are consistent with the near-atomic resolution structural dynamics reported in a recent time-resolved Laue crystallography study of PYP crystals and suggest that the early time structural dynamics in the crystalline state carry over to proteins in solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.