Abstract

Photoactive yellow protein (PYP) is a bacterial photoreceptor containing a 4-hydroxycinnamyl chromophore. Photoexcitation of PYP triggers a photocycle that involves at least two intermediate states: an early red-shifted PYP(L) intermediate and a long-lived blue-shifted PYP(M) intermediate. In this study, we have explored the active site structures of these intermediates by resonance Raman spectroscopy. Quantum chemical calculations based on a density functional theory are also performed to simulate the observed spectra. The obtained structure of the chromophore in PYP(L) has cis configuration and no hydrogen bond at the carbonyl oxygen. In PYP(M), the cis chromophore is protonated at the phenolic oxygen and forms the hydrogen bond at the carbonyl group. These results allow us to propose structural changes of the chromophore during the photocycle of PYP. The chromophore photoisomerizes from trans to cis configuration by flipping the carbonyl group to form PYP(L) with minimal perturbation of the tightly packed protein interior. Subsequent conversion to PYP(M) involves protonation on the phenolic oxygen, followed by rotation of the chromophore as a whole. This large motion of the chromophore is potentially correlated with the succeeding global conformational changes in the protein, which ultimately leads to transduction of a biological signal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call