Abstract

In this paper, the probe absorption spectrum of an atom in a double-band photonic crystal have been studied. In the modes, we assume that one of the two atomic transitions in a ?-type atomic system is interacting with free vacuum modes and another transition is interacting with free vacuum modes, isotropic photonic band gap (PBG) modes and anisotropic PBG modes, separately. The effects of the fine structure of the atomic lower levels on the probe absorption spectrum are investigated in detail in the three cases. The most interesting thing is that the two (four) transparencies at one (two) probe absorption peak(s), caused by the fine structure of the lower levels of an atom, are predicted in the case of isotropic PBG modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.