Abstract

A four-tip electrostatic probe is constructed to measure high-frequency (0.1-10MHz) fluctuations in both the electric field (one component) and electron density in a laboratory plasma. This probe also provides data for the local electron temperature and density. Circuits for high-frequency measurements are fabricated on two miniature boards, which are embedded in the probe shaft, near the tips to minimize the pickup of common-mode signals. The amplitude and phase response of two circuits to sinusoidal test signals are measured and compared with results from modeling. For both circuits, the phase shift between input and output signals is relatively small (<30°). The performance of the probe is verified in a high-density (∼1013cm-3) and low-temperature (≲10 eV) plasma. The probe successfully measures high-frequency (∼2 MHz) fluctuations in the electric field and density, which are associated with lower hybrid drift waves. This probe can provide information on the wave-associated anomalous drag, which can be compared with the classical resistivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.