Abstract

Warm inflation is analyzed in the context of Loop Quantum Cosmology (LQC). The bounce in LQC provides a mean through which a Liouville measure can be defined, which has been used previously to characterize the a priori probability for inflation in LQC. Here we take advantage of the tools provided by LQC to study instead the a priori probability for warm inflation dynamics in the context of a monomial quartic inflaton potential. We study not only the question of how a general warm inflation dynamics can be realized in LQC with an appropriate number of e-folds, but also how such dynamics is constrained to be in agreement with the latest cosmic microwave background radiation from Planck. The fraction of warm inflation trajectories in LQC that gives both the required minimum amount e-folds of expansion and also passes through the observational window of allowed values for the tensor-to-scalar ratio and the spectral tilt is explicitly obtained. We find that the probability of warm inflation with a monomial quartic potential in LQC is higher than that of cold inflation in the same context. Furthermore, we also obtain that the a priori probability gets higher as the inherent dissipation of the warm inflation dynamics increases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call