Abstract

Many current applications of maneuver design to astrodynamics consider a deterministic case, where statistics or uncertainty is left unquantified. When including constraints based on the probability of collision, any solution must be robust to the uncertainty of the system. This paper considers the methodology of separated representations for orbit uncertainty propagation and its subsequent application to a reliability design formulation of the maneuver design problem. Separated representations is a polynomial surrogate method that has been shown to be both efficient at propagating uncertainty when considering high stochastic dimension and accurate over long propagation times. This efficiency is leveraged to improve tractability when solving the reliability design problem using optimization under uncertainty. Two sequential, potential collisions are considered in the results of this paper, with one object able to maneuver. The optimization problem therefore seeks to avoid both collisions. The probability of each collision is estimated via large numbers of samples propagated via the separated representation. The accuracy of the surrogates is compared to that of a Monte Carlo reference, and the variability of the estimated probabilities of collision is analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.