Abstract
Sharp exponential bounds for the probabilities of deviations of the supremum of a (possibly non-iid) empirical process indexed by a class $\mathscr{F}$ of functions are proved under several kinds of conditions on $\mathscr{F}$. These bounds are used to establish laws of the iterated logarithm for this supremum and to obtain rates of convergence in total variation for empirical processes on the integers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.