Abstract

We give necessary and sufficient conditions to characterize the convergence in distribution of a sequence of arbitrary random variables to a probability distribution which is the invariant measure of a diffusion process. This class of target distributions includes the most known continuous probability distributions. Precisely speaking, we characterize the convergence in total variation to target distributions which are not Gaussian or Gamma distributed, in terms of the Malliavin calculus and of the coefficients of the associated diffusion process. We also prove that, among the distributions whose associated squared diffusion coefficient is a polynomial of second degree (with some restrictions on its coefficients), the only possible limits of sequences of multiple integrals are the Gaussian and the Gamma laws.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.