Abstract
This article revisits the maximum entropy algorithm in the context of recovering the probability distribution of an asset from the prices of finitely many associated European call options via partially finite convex programming. We are able to provide an effective characterization of the constraint qualification under which the problem reduces to optimizing an explicit function in finitely many variables. We also prove that the value (or objective) function is lower semicontinuous on its domain. Reference is given to a website which exploits these ideas for the efficient computation of the maximum entropy solution (MES).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.