Abstract
In this work, we present a method for approximating constrained maximum entropy (ME) reconstructions of SPECT data with modifications to a block-iterative MAP algorithm. Maximum likelihood (ML)-based reconstruction algorithms require some form of noise smoothing. Constrained ME provides a more formal method of noise smoothing without requiring the user to select parameters. In the context of SPECT, constrained ME seeks the smoothest image estimate whose projections are a given distance from the noisy measured data, with that distance determined by the magnitude of the Poisson noise. Images that meet the distance criterion are referred to as images. We find that modeling of all principal degrading factors (attenuation, detector response, and scatter) in the reconstruction is critical because feasibility is not meaningful unless the projection model is as accurate as possible, Because the constrained ME solution is the same as a maximum a posteriori (MAP) solution for a particular value of the MAP weighting parameter, /spl beta/, the constrained ME solution can be found with a MAP algorithm if the correct value of /spl beta/ is found. We show that the RBI-MAP algorithm, if used with a dynamic scheme for estimating /spl beta/, can approximate constrained ME solutions in twenty or fewer iterations. We compare results for various methods of achieving feasible images on a simulation of Tl-201 cardiac SPECT data. Results show that the RBI-MAP ME approximation provides images and quantitative estimates close to those from a slower algorithm that gives the true ME solution. Also, we find that the ME results have higher spatial resolution and greater high-frequency noise content than a feasibility-based stopping rule, feasibility-based low-pass filtering, and a quadratic Gibbs prior with /spl beta/ selected according to the feasibility criterion. We conclude that fast ME approximation is possible using either RBI-MAP with the dynamic procedure or a feasibility-based stopping rule, and that such reconstructions may be particularly useful in applications where resolution is critical.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.