Abstract
Zero-crossing wave heights, obtained from the field measurement of random waves propagating through salt marsh vegetation (Spartina alterniflora) during a tropical storm, were analyzed to examine their probability distribution. Wave data (significant wave heights up to 0.4m in 0.8m depth) were collected over a two-day period along a 28m transect using three pressure transducers sampling at 10Hz. Wave height distribution was observed to deviate from the Rayleigh distribution. The observed probability densities of the larger wave heights were reduced significantly by vegetation, producing wave heights lower than those predicted by the Rayleigh distribution. Assuming Rayleigh distributed wave heights for the incident waves to the vegetation patch, existing vegetation-induced wave attenuation formulations are used to derive a special form of two-parameter Weibull distribution for wave heights in the inundated wetland. The scale parameter of the distribution is theoretically shown to be a function of the shape parameter, which agrees with the measurements, effectively reducing the proposed distribution to a one-parameter type. The derived distribution depends on the local parameters only and fits well to the observed distribution of wave heights attenuated by vegetation. Empirical relationships are developed to estimate the shape parameter from the local wave parameters.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have