Abstract

We present the optical tomography of the probability density of quasiparticles, the microcavity polaritons, confined in three dimensions by cylindrical traps. Collecting the photoluminescence emitted by the quasimodes under continuous nonresonant laser excitation, we reconstruct a three-dimensional mapping of the photoluminescence, from which we can extract the spatial distribution of the confined states at any energy. We discuss the impact of the confinement geometry on the wave function patterns and give an intuitive understanding in terms of a light-matter quasiparticle confined in a box.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.