Abstract

Fluorescence correlation spectroscopy evaluates local signal fluctuations arising from stochastic movements of fluorescent particles in solution. The measured fluctuating signal is correlated in time and analyzed with appropriate model functions containing the parameters that describe the underlying molecular behavior. The dual-color extension, fluorescence cross-correlation spectroscopy (FCCS) allows for a comparison between spectrally well-separated channels to extract codiffusion events that reflect interactions between differently labeled molecules. In addition to solution measurements, FCCS can be applied with subcellular resolution and is therefore a very promising approach for a quantitative biochemical assessment of molecular networks in living cells. To derive thermodynamic and kinetic reaction parameters, the influence of a number of other factors like background noise, illumination intensity profiles, photophysical processes, and cross talk between the channels have to be treated. Here, we provide a roadmap to derive binding reaction data with dual-color FCCS using continuous wave laser excitation, as it is now accessible with many state-of-the-art confocal microscopes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.