Abstract
Probabilistic wind generation forecast results are crucial for power system operational dispatch. In this paper, a nonparametric approach for short-term probabilistic wind generation forecast based on the sparse Bayesian classification (SBC) and Dempster-Shafer theory (DST) is proposed. This approach is composed by the following four steps: Firstly, a spot forecast of wind generation is performed based on Support Vector Machine (SVM); Secondly, the range of SVM forecast error is discretized into multiple intervals, and the conditional probability of each interval is estimated by a sparse Bayesian classifier; Thirdly, DST is applied to combine the probabilities of all the intervals to form a unified probability distribution function of the SVM forecast error; Lastly, the probability distribution function of wind generation is achieved by combining the SVM wind generation spot forecast result and corresponding forecast error distribution. The distinguishing features of the proposed approach are as follows: (a) The approach is a nonparametric one and the forecast error caused by the misjudgement of probability distribution type can be avoided; (b) The proposed approach has good generalization capability by using the sparse learning mechanism; and (c) The range constraint of wind generation can be systematically considered in the approach by applying DST. Tests on a 74-MW wind farm illustrate the effectiveness of the proposed approach.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have