Abstract

The minimum cost flow problem (MCFP) is the most generic variation of the network flow problem which aims to transfer a commodity throughout the network to satisfy demands. The problem size (in terms of the number of nodes and arcs) and the shape of the cost function are the most critical factors when considering MCFPs. Existing mathematical programming techniques often assume the cost functions to be linear or convex. Unfortunately, the linearity and convexity assumptions are too restrictive for modelling many real-world scenarios. In addition, many real-world MCFPs are large-scale, with networks having a large number of nodes and arcs. In this paper, we propose a probabilistic tree-based genetic algorithm (PTbGA) for solving large-scale minimum cost integer flow problems with nonlinear non-convex cost functions. We first compare this probabilistic tree-based representation scheme with the priority-based representation scheme, which is the most commonly-used representation for solving MCFPs. We then compare the performance of PTbGA with that of the priority-based genetic algorithm (PrGA), and two state-of-the-art mathematical solvers on a set of MCFP instances. Our experimental results demonstrate the superiority and efficiency of PTbGA in dealing with large-sized MCFPs, as compared to the PrGA method and the mathematical solvers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call