Abstract

This paper presents a novel probabilistic spherical-detection (P-SD) method which applies the probabilistic-search algorithm to conventional depth-first SD (DF-SD). By confining the tree search into candidates which can be selected in an adaptive manner, a large number of promising candidates can be evaluated before termination. Consequently, the proposed P-SD improves the error performance of DF-SD with early termination, while retaining the hardware efficiency. An efficient VLSI architecture is proposed for implementation of the P-SD algorithm, and the results of the synthesized architecture are presented. The main advantage of P-SD is that it can fully exploit the state-of-the-art architectures of DF-SD, since it can be implemented by simply adding two functional blocks to conventional DF-SD. By analyzing the performance-complexity tradeoffs, it is concluded that our proposed P-SD is advantageous over conventional DF-SD and K-best algorithm, when the maximum-likelihood error performance is desired.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.