Abstract

Effective sharing of the last level cache has a significant influence on the overall performance of a multicore system. We observe that existing solutions control cache occupancy at a coarser granularity, do not scale well to large core counts and in some cases lack the flexibility to support a variety of performance goals. In this paper, we propose Probabilistic Shared Cache Management (PriSM), a framework to manage the cache occupancy of different cores at cache block granularity by controlling their eviction probabilities. The proposed framework requires only simple hardware changes to implement, can scale to larger core count and is flexible enough to support a variety of performance goals. We demonstrate the flexibility of PriSM, by computing the eviction probabilities needed to achieve goals like hit-maximization, fairness and QOS. PriSM-HitMax improves performance by 18.7% over LRU and 11.8% over previously proposed schemes in a sixteen core machine. PriSM-Fairness improves fairness over existing solutions by 23.3% along with a performance improvement of 19.0%. PriSM-QOS successfully achieves the desired QOS targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.