Abstract

The concept of resilience is gaining increased attention in disaster management due to the recent awareness of the need to reduce the detrimental post-event effects of natural disasters, e.g., earthquakes. Resilience is a practical concept that includes pre-event (preparedness and mitigation) and post-event (response and recovery) activities. Quantitative resilience assessment approaches are needed to compare the available mitigation strategies to decide on the most suitable strategy and provide better support for decision-making procedures. In this study, a methodology for quantifying the seismic resilience of reinforced masonry shear wall (RMSW) buildings with end-confined masonry boundary elements is implemented. The uncertainties associated with structural and non-structural losses and estimated recovery time uncertainties are considered while quantifying the resilience index of RMSW buildings. The archetype buildings studied have 8-, 10-, and 12-storey heights and are located in Vancouver, representing a high seismic zone in Canada. First, a numerical model was developed using OpenSees to derive the fragility surface for the studied archetypes subjected to bi-directional horizontal excitation. Second, a Monte Carlo simulation was performed to quantify the resilience index of each archetype considering the above-mentioned uncertainties. The results prove the robustness of ductile RMSW buildings having end-confined MBEs in mitigating the losses associated with disaster events. Additionally, the findings provide comprehensive and valuable information for earthquake mitigation measures and disaster risk reduction programmes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call