Abstract

1. The effects of adenosine on the probability of secretion of acetylcholine quanta and on presynaptic and postsynaptic action potentials was examined in the post-hatched avian ciliary ganglion. 2. Adenosine (20 microM) reduced the average size of the excitatory postsynaptic potential (EPSP) by 33%. This was due to a decrease in quantal content of the EPSP (m). The effect was blocked by theophylline (50 microM). 3. Adenosine deaminase (2.5 i.u./ml) increased the size of the EPSP by 70%, suggesting that endogenous adenosine modulates synaptic transmission in the ciliary ganglion. However, theophylline (20-100 microM) did not affect the EPSP in a low [Ca2+]o of 1 mM and high [Mg2+]o of 6 mM. 4. Plateau-type action potentials with a large calcium component were generated in the ciliary neurones by bathing the ganglion in tetraethylammonium ions (TEA, 10 mM). Adenosine (20 microM) reduced the duration of these action potentials on short exposures (less than 20 min) but increased the duration on longer exposure (greater than 30 min). Adenosine did not affect the normal action potential recorded in the absence of TEA. 5. Adenosine (20 microM) hyperpolarized the nerve terminal and as a consequence increased the size of the presynaptic action potential and reduced its after-hyperpolarization. 6. Plateau-type action potentials with a large calcium component were generated in the nerve terminals using TEA (10 mM). The duration of these action potentials was significantly reduced by adenosine (20 microM). 7. Adenosines action on nerve terminals, to hyperpolarize the membrane and reduce calcium influx, may contribute to its effect in reducing m of the EPSP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.