Abstract

This paper presents a novel probabilistic algorithm for optimal reactive power provision in hybrid electricity markets. The proposed algorithm is a six-stage multiobjective nonlinear constrained optimization problem which takes into account load forecasting inaccuracies. Considering a set of probable forecasted loads, a three-component expected total market payment function is suggested being minimized as cost function of the first stage. Besides economic issues, expected voltage security margin, deviation from multilateral and pool based energy transactions, deviation from spinning reserve contracts, having adequate local reactive power reserve in each voltage control area of the system and transmission congestion probability are well thought out in stages 2–5 as technical aspects of the market. Finally, in the last stage, using different weighting factors to compromise between all objects, a probabilistic multiobjective function is presented to find the best reactive power market schedule. The proposed algorithm is applied on IEEE 24-bus test system. As a benchmark, Monte Carlo Simulation method is utilized to simulate the market of given period of time to evaluate results of the proposed algorithm, and satisfactory results are achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.