Abstract
Physical model chain is a step-by-step modeling framework for the conversion of irradiance to photovoltaic (PV) power. When a model chain is fed with irradiance forecasts, it provides the corresponding PV power forecasts. Despite its advantages, forecasting with model chains has yet to receive the attention that it deserves. In several recent works, however, the idea of model-chain-based solar forecasting has been formally modernized, though the framework was restricted to deterministic forecasting. In this work, the model-chain-based forecasting framework is extended to the probability space, in that, a calibrated ensemble of model chains is used to generate probabilistic PV power forecasts. Using two-year data from eight PV plants in Hungary, alongside professional weather forecasts issued by the Hungarian Meteorological Services, it is empirically shown that the raw model-chain ensemble forecasts tend to be underdispered, but adequate post-processing is able to improve calibration and reduce the continuous ranked probability score of raw ensembles by 20%. Given the fact that uncertainty quantification has a cardinal importance to grid integration, this probabilistic extension of the model-chain-based solar forecasting framework is thought beneficial.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.