Abstract
The longevity of railway vehicles is an important factor in their mechanical and structural design. Fatigue is a major issue that affects the durability of railway components, and therefore, knowledge of the fatigue resistance characteristics of critical components, such as the leaf springs, must be extensively investigated. This research covers the fatigue resistance of chromium–vanadium alloy steel, usually designated as 51CrV4, from the high-cycle regime (HCF) (103–104) up to very high-cycle fatigue (VHCF) (109) under the bending loading conditions typical of leaf springs and under uniaxial tension/compression loading, respectively, for a stress ratio, Rσ, of −1. Different test frequencies were considered (23, 150, and 20,000 Hz) despite the material not exhibiting a relatively significant frequency effect. In order to create a new fatigue prediction model, two prediction models, the Basquin SN linear regression model and the Castillo–Fernandez–Cantelli (CFC) model, were evaluated. According to the analysis carried out, the CFC model provided a better prediction of the fatigue failures than the SN model, especially when outlier failure data were considered. The investigation also examined the failure modes, observing multiple cracks for higher loads and single cracks that initiated on the surface or from internal inclusions at lower loading. The present investigation aims to provide a fatigue resistance prediction model encompassing the HCF and VHCF regions for the fatigue design of railway wagon leaf springs, or even for other components made of 51CrV4 with a tempered martensitic microstructure.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have