Abstract
A probabilistic methodology for modeling fatigue damage accumulation and fatigue life under variable amplitude loading is proposed in this paper. With probabilistic modifications, the calculative consistency between fatigue damage and life is achieved in the model and the load sequence effects are properly accounted for variable amplitude loading. This damage model overcomes the inherent deficiencies in the linear damage accumulation rule but still preserves its simplicity for engineering application. With Monte Carlo sampling method, numerical verification of this model is conducted under two-level spectrum loading. The predicted probabilistic distributions of fatigue life are validated by the fatigue tests on Al-alloy straight lugs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have