Abstract
We demonstrate the existence, uniqueness and Galerkin approximatation of linear ultraparabolic terminal value/infinite-horizon problems on unbounded spatial domains. Furthermore, we provide a probabilistic interpretation of the solution in terms of the expectation of an associated ultradiffusion process.
Highlights
The connection between parabolic equations and diffusion processes is well understood; the same cannot be said for ultraparabolic equations and ultradiffusion processes
We extend here the results of [5] to linear ultraparabolic terminal value/infinite-horizon temporal problems posed on unbounded spatial domains
We provide a probabilistic interpretation of the solution in terms of the expectation of an associated ultradiffusion process
Summary
The connection between parabolic equations and diffusion processes is well understood; the same cannot be said for ultraparabolic equations and ultradiffusion processes. Theoretical results have been fairly limited relative to the existence and uniqueness of solutions to ultraparabolic equations, deriving from two methodologies. The analysis is affected along the characteristic of the first-order temporal operator, requiring that the speed of propagation varies only spatially. Such an approach was developed by Piskunov [1] in the classical case and extended by Lions [2] to the generalized sense. We extend here the results of [5] to linear ultraparabolic terminal value/infinite-horizon temporal problems posed on unbounded spatial domains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.