Abstract

A probabilistic fatigue life prediction framework for concrete bridges is proposed in this study that considers the stress history from the construction stage to the operation stage. The proposed fatigue analysis framework combines the fatigue crack growth-based material life prediction model and a nonlinear structural analysis method. A reliability analysis is proposed using the developed probabilistic model to consider various uncertainties associated with the fatigue damage. A Bayesian network is established to predict the fatigue life of a concrete bridge according to the proposed framework. The proposed methodology is demonstrated using an experimental example for fatigue life prediction of a concrete box-girder. Comparison with experimental data of fatigue life shows a satisfactory accuracy using the proposed methodology, and the ratio of the posterior predicted mean (updating time n = 8) to the test value decreases to 33%–1% in the current investigation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.