Abstract

Recently, the researchers of prognostics and health management (PHM) have been developed to the field of engineering. In this study, probabilistic fatigue life which based on Zhurkov model is suggested using stochastically and statistically estimated lethargy coefficient. The fatigue life model was derived using Zhurkov life model and it was deterministically validated with the reference of fatigue life data. For this process, firstly, lethargy coefficient which is relative to the failure of materials has to be obtained with rupture time and stress from quasi-static tensile test. These experiments are performed using HS40R steel. However, lethargy coefficient has uncertainties due to inherent uncertainty and the variation of material properties in the experiments. Bayesian approach was employed for estimating the lethargy coefficient of the fatigue life model using Markov Chain Monte Carlo (MCMC) sampling method and considering its uncertainties. Once the samples are obtained, one can proceed to the posterior predictive inference on the fatigue life. This life model is reasonable through comparing with experimental fatigue life data. As a result, predicted fatigue life was observed that it was significantly decreased in accordance with increasing stress conditions relatively. This life model is reasonable through comparing with experimental fatigue life data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.