Abstract
This is the first one of two companion papers focusing on the establishment of a new path for the expectation value dynamics of the quantum mechanical operators. The main goal of these studies is to do quantum mechanics without explicitly solving Schrodinger wave equation, in other words, without using wave functions except their initially given forms. This goal is achieved by using Ehrenfest theorem and utilizing probabilistic evolution approach (PEA). PEA, first introduced by Metin Demiralp, is a method providing solutions to the nonlinear ordinary differential equations by transforming them to a set of linear ODEs at the cost of denumerably infinite dimensionality. It is recently shown that this method produces analytic solutions, if the initial conditions are given appropriately at some special cases. However, generalization of these conditions to the quantum mechanical applications is not straightforward due to the dispersion of the quantum mechanical systems. For this purpose, multivariate moment problems for the integral representation of the Kronecker power series are introduced and then solved yielding to more specific and precise convergence analysis for the quantum mechanical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.