Abstract

In this work, we investigate the probabilistic evolution approach (PEA) to ordinary differential equations whose evolution matrices are composed of only two diagonals under certain initial value impositions. We have been able to develop analytic expressions for truncation approximants which can be generated by using finite left uppermost square blocks in the denumerable infinite number of PEA equations and their infinite limits. What we have revealed is the fact that the truncation approximants converge for initial value parameter, values residing at most in a disk centered at the expansion point and excluding the nearest zero(es). The numerical implementations validate this formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.