Abstract
We present a probabilistic cost model to analyze the performance of the kd-tree for nearest neighbor search in the context of content-based image retrieval. Our cost model measures the expected number of kd-tree nodes traversed during the search query. We show that our cost model has high correlations with both the observed number of traversed nodes and the runtime performance of search queries used in image retrieval. Furthermore, we prove that, if the query points follow the distribution of data used to construct the kd-trees, the median-based partitioning method as well as PCA-based partitioning technique can produce near-optimal kd-trees in terms of minimizing our cost model. The probabilistic cost model is validated through experiments in SIFT-based image retrieval.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.