Abstract

A general engineering methodology to construct a family of anisomorphic constant fatigue life (CFL) diagrams with probability of failure as the parameter that allows efficiently predicting P–S–N curves at any stress ratios is developed and validated for a plain weave fabric carbon/epoxy laminate. Constant amplitude fatigue tests are first performed to obtain statistical samples of fatigue life at different stress levels and stress ratios, respectively. Static tensile and compressive strength data are also collected. The Kolmogorov–Smirnov and Anderson–Darling goodness-of-fit tests suggest that both two-parameter lognormal and Weibull distributions are acceptable as the distributions for the static strength and fatigue life data, respectively, at the significance level of 5%. Then, we attempt to develop a methodology for efficient construction of the anisomorphic CFL diagrams for different constant values of probability of failure. It requires the P–S–N curves for any percentile points of the distribution for the critical stress ratio. To come up with this requirement, a probabilistic scaling law is formulated. It takes account of the probability-of-failure dependence of the critical stress ratio and the stress-ratio dependence of the P–S–N curve for the critical stress ratio. Finally, the anisomorphic CFL diagrams for different constant values of probability of failure are predicted using the proposed methodology, and they are shown to be in good agreement with the experimental results. It is also demonstrated that the P–S–N curves can efficiently and accurately be predicted for the woven CFRP laminate at any stress ratios using the proposed probabilistic anisomorphic CFL diagram approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call