Abstract
This paper presents a reliability-based approach for the three-dimensional analysis and design of the face stability of a shallow circular tunnel driven by a pressurized shield. Both the collapse and the blow-out failure modes of the ultimate limit state are studied. The deterministic models are based on the upper-bound method of the limit analysis theory. The collapse failure mode was found to give the most critical deterministic results against face stability and was adopted for the probabilistic analysis and design. The random variables used are the soil shear strength parameters. The Hasofer-Lind reliability index and the failure probability were determined. A sensitivity analysis was also performed. It was shown that (1) the assumption of negative correlation between the soil shear strength parameters gives a greater reliability of the tunnel face stability with respect to the one of uncorrelated variables; (2) FORM approximation gives accurate results of the failure probability; and (3) the failure ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.