Abstract
Shape and location organ variability induced by respiration constitutes one of the main challenges during dose delivery in radiotherapy. Providing up-to-date volumetric information during treatment can improve tumor tracking, thereby increasing treatment efficiency and reducing damage to healthy tissue. We propose a novel probabilistic model to address the problem of volumetric estimation with scalable predictive horizon from image-based surrogates during radiotherapy treatments, thus enabling out-of-plane tracking of targets. This problem is formulated as a conditional learning task, where the predictive variables are the 2D surrogate images and a pre-operative static 3D volume. The model learns a distribution of realistic motion fields over a population dataset. Simultaneously, a seq-2-seq inspired temporal mechanism acts over the surrogate images yielding extrapolated-in-time representations. The phase-specific motion distributions are associated with the predicted temporal representations, allowing the recovery of dense organ deformation in multiple times. Due to its generative nature, this model enables uncertainty estimations by sampling the latent space multiple times. Furthermore, it can be readily personalized to a new subject via fine-tuning, and does not require inter-subject correspondences. The proposed model was evaluated on free-breathing 4D MRI and ultrasound datasets from 25 healthy volunteers, as well as on 11 cancer patients. A navigator-based data augmentation strategy was used during the slice reordering process to increase model robustness against inter-cycle variability. The patient data was used as a hold-out test set. Our approach yields volumetric prediction from image surrogates with a mean error of 1.67 ± 1.68mm and 2.17 ± 0.82mm in unseen cases of the patient MRI and US datasets, respectively. Moreover, model personalization yields a mean landmark error of 1.4 ± 1.1mm compared to ground truth annotations in the volunteer MRI dataset, with statistically significant improvements over state-of-the-art.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have