Abstract

[abstFig src='/00290001/09.jpg' width='300' text='3D sound source environmental map' ] The study proposes a probabilistic 3D sound source mapping system for a moving sensor unit. A microphone array is used for sound source localization and tracking based on the multiple signal classification (MUSIC) algorithm and a multiple-target tracking algorithm. Laser imaging detection and ranging (LIDAR) is used to generate a 3D geometric map and estimate the location of its six-degrees-of-freedom (6 DoF) using the state-of-the-art gyro-integrated iterative closest point simultaneous localization and mapping (G-ICP SLAM) method. Combining these modules provides sound detection in 3D global space for a moving robot. The sound position is then estimated using Monte Carlo localization from the time series of a tracked sound stream. The results of experiments using the hand-held sensor unit indicate that the method is effective for arbitrary motions of the sensor unit in environments with multiple sound sources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call