Abstract

BackgroundLeft-stellate ganglion stimulation (LSGS) can modify regional dispersion of ventricular refractoriness, promote triggered activity, and reduce the threshold for ventricular fibrillation (VF). Sympathetic hyperactivity precipitates torsades de pointes (TdP) and VF in susceptible patients with long-QT syndrome type 1 (LQT1). We investigated the electromechanical effects of LSGS in a canine model of drug-induced LQT1, gaining novel arrhythmogenic insights. MethodsIn nine mongrel dogs, the left and right stellate ganglia were exposed for electrical stimulation. ECG, left- and right-ventricular endocardial monophasic action potentials (MAPs) and pressures (LVP, RVP) were recorded. The electromechanical window (EMW; Q to LVP at 90% relaxation minus QT interval) was calculated. LQT1 was mimicked by infusion of the KCNQ1/IKs blocker HMR1556. ResultsAt baseline, LSGS and right-stellate ganglion stimulation (RSGS) caused similar heart-rate acceleration and QT shortening. Positive inotropic and lusitropic effects were more pronounced under LSGS than RSGS. IKs blockade prolonged QTc, triggered MAP-early afterdepolarizations (EADs) and rendered the EMW negative, but no ventricular tachyarrhythmias occurred. Superimposed LSGS exaggerated EMW negativity and evoked TdP in 5/9 dogs within 30 s. Preceding extrasystoles originated mostly from the outflow-tracts region. TdP deteriorated into therapy-refractory VF in 4/5 animals. RSGS did not provoke TdP/VF. ConclusionsIn this model of drug-induced LQT1, LSGS readily induced TdP and VF during repolarization prolongation and MAP-EAD generation, but only if EMW turned from positive to very negative. We postulate that altered mechano-electric coupling can exaggerate regional dispersion of refractoriness and facilitates ventricular ectopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.