Abstract

The PrnA transcriptional activator of Aspergillus nidulans binds as a dimer to CCGG-N-CCGG inverted repeats and to CCGG-6/7N-CCGG direct repeats. The binding specificity of the PrnA Zn cluster differs from that of the Gal4p/Ppr1p/UaY/Put3p group of proteins. Chimeras with UaY, a protein that strictly recognizes a CGG-6N-CCG motif, show that the recognition of the direct repeats necessitates the PrnA dimerization and linker elements, but the recognition of the CCGG-N-CCGG inverted repeats depends crucially on the PrnA Zn binuclear cluster and/or on residues amino-terminal to it. Three high-affinity sites in two different promoters have been visualized by in vivo methylation protection. Proline induction is essential for in vivo binding to these three sites but, as shown previously, not for nuclear entry. Simultaneous repression by ammonium and glucose does not affect in vivo binding to these high-affinity sites. PrnA differs from the isofunctional Saccharomyces cerevisiae protein Put3p, both in its unique binding specificity and in the requirement of induction for in vivo DNA binding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.