Abstract

The epithelium of the pulmonary airway is composed of several distinct cell types that differentiate from common progenitor cells to provide defense against environmental insults. Epigenetic mechanisms regulating lineage differentiation of airway epithelial progenitors remain poorly understood. Proteinargininemethyltransferase 5(Prmt5) is a predominant type II arginine methyltransferase that methylates >85% of symmetric arginine residues. Here, we provide evidence for the function of Prmt5 in promoting ciliated cell fate specification of airway epithelial progenitors. We show that lung epithelial-specific deletion of Prmt5 resulted in a complete loss of ciliated cells, an increased number of basal cells, and ecotopic-expressed Tp63-Krt5+ putative cells in the proximal airway. We further identified that transcription factor Tp63 is a direct target of Prmt5, and Prmt5 inhibited Tp63 transcription expression through H4R3 symmetric dimethylation (H4R3sme2). Moreover, inhibition of Tp63 expression in Prmt5-deficient tracheal progenitors could partially restore the ciliated cell deficient phenotype. Together, our data support a model where Prmt5-mediated H4R3sme2 represses Tp63 expression to promote ciliated cell fate specification of airway progenitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.