Abstract

Cloud server aggregates a large amount of genome data from multi genome donors to facilitate scientific research. However, the untrusted cloud server is prone to violate privacy of aggregating genome data. Thus, each genome donor can randomly perturb her genome data using differential privacy mechanism before aggregating. But this is easy to lead to utility disaster of aggregating genome data due to the different privacy preferences of each genome donor, and privacy leakage of aggregating genome data because of the kinship between genome donors. The key challenge here is to achieve an equilibrium between privacy preserving and data utility of aggregating multiparty genome data. To this end, we proposed federated aggregation protocol of multiparty genome data (MGD-FAP) with privacy-utility equilibrium for guaranteeing desired privacy protection and desired data utility. First, we regarded the privacy budget and the accuracy as the desired privacy-utility metrics of genome data respectively. Second, we constructed the federated aggregation model of multiparty genome data by combining random perturbation method of genome data guaranteeing desired data utility with federated comparing update method of local privacy budget achieving desired privacy preserving. Third, we presented the MGD-FAP maintaining privacy-utility equilibrium under the federated aggregation model of multiparty genome data. Finally, our theoretical and experimental analysis showed that MGD-FAP can maintain privacy-utility equilibrium. The MGD-FAP is practical and feasible to ensure the privacy-utility equilibrium of cloud server aggregating multiparty genome data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call