Abstract
With the fast development of cloud computing, more and more data storage and computation are moved from the local to the cloud, especially the applications of machine learning and data analytics. However, the cloud servers are run by a third party and cannot be fully trusted by users. As a result, how to perform privacy-preserving machine learning over cloud data from different data providers becomes a challenge. Therefore, in this paper, we propose a novel scheme that protects the data sets of different providers and the data sets of cloud. To protect the privacy requirement of different providers, we use public-key encryption with a double decryption algorithm (DD-PKE) to encrypt their data sets with different public keys. To protect the privacy of data sets on the cloud, we use ϵ-differential privacy. Furthermore, the noises for the ϵ-differential privacy are added by the cloud server, instead of data providers, for different data analytics. Our scheme is proven to be secure in the security model. The experiments also demonstrate the efficiency of our protocol with different classical machine learning algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.