Abstract

The continuous emergence of new and sophisticated malware specifically targeting Android-based Internet of Things devices is causing significant security hazards and is consequently fostering the need for effective detection models and strategies able to work with these hardware-constrained devices. In addition, since such models are often trained on confidential application data, many involved subjects are reluctant to share their data for this purpose. Accordingly, several Federated Learning-based solutions are emerging, which rely on the capabilities of Machine Learning models in malware detection/classification without sharing user data. However, Federated Learning methods are often adversely affected by non-independent and identically distributed data in terms of both the required training time and classification results. Therefore, a promising solution could be to overcome the Federated Learning-related issues by preserving the privacy of end-user data. In this direction, the capabilities of Markov chains and associative rules are extended within a federated environment to face malware classification tasks in the IoT scenario. The presented approach, evaluated on several malware families, has achieved an average accuracy of 99% in the presence of centralized and decentralized unbalanced training/testing data by overcoming the most common state-of-the-art approaches. Also, its runtime performance is comparable with centralized ones by considering several non-independent and identically distributed dataset partitions, splitting criteria, and clients, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.