Abstract
Introduction/purpose: Gunpowder is a type of explosive material (EM), a mixture of chemical compounds capable of releasing their potential energy in a very fast exothermic chemical reaction. This paper investigates the single base gunpowder samples. Methods: Microcalorimetry (MC), or heat flow calorimetry (HFC), is the only modern method that monitors the direct cause of autoignition - the rate of heat release, which is a key factor for gunpowder storage explosive safety. It is based on high-sensitivity calorimeters which allow monitoring of chemical reactions at low speeds. The microcalorimeter "TAM III" was used and the method given by the NATO standard STANAG 4582. A very reliable result was obtained on the chemical stability of the observed single base gunpowder samples, as well as an assessment of its behavior in the next 10 years. Results: The thermal activity of gunpowder depends on several factors, the most important of which are: chemical composition, size and shape of the gunpowder grain, the degree of decomposition of the gunpowder, storage conditions, etc. Namely, it is a much more exact and consistent indicator of the chemical stability of gunpowder compared to the critical diameter. Conclusion: The MC method should be used both for monitoring the chemical stability of gunpowder during storage and for the prediction of the service life of gunpowder.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have