Abstract
The number of Electric vehicle (EV) users is expected to increase in the future. The driving profile of EV users is unpredictable, necessitating the design of charging scheduling protocols for EV charging stations servicing multiple EVs. A large EV charging load affects the grid in terms of peak load demand. Electric vehicle charging stations with solar panels can help to reduce the grid impact of EV charging events. With reference to the increasing number of EVs, new technology needs to be developed for charging station and management to create a stable system for users, and electric utilities. The load of a total EV charge can affect the grid, degrading quality and system stability. In this paper, a charging station scheduling strategy is proposed based on the game theoretic approach. In the proposed strategy, with respect to the grid load demand minimization, charging stations have scheduled EV charging times to prevent sudden peak load on the grid the proposed game theory strategy is sudden peak load on the grid. The proposed game theory strategy is defined on the basis of priority so that both grid operators and EV users can maximize their profit by setting priorities for charging and discharging. This work provides a strategy for grid peak load minimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.