Abstract
Modern theoretical notations on electrical breakdown in vacuum consider cathode triggering mechanisms to be most responsible on short-pulsed (<1 /spl mu/s) breakdowns while anode mechanisms to be responsible in a part on DC and long-pulsed breakdowns. Following those notations, we tried to reveal conditions at which either mechanism steps aside to another one. The study involved several experimental techniques including the anode-probe surface scanning, pulsed electron-beam surface melting in vacuum for surface cleaning, and intentional dust particle contamination of electrode surfaces. Breakdown tests were performed using a pulser capable of producing 220 kV quasi-square pulses that were adjustable to /spl sim/30 to 80 ns pulse length. Our experiments showed that cathode emission sites are responsible for breakdowns at relatively low hold-off fields. At higher electric fields of up to 1 MV/cm, the anode share in the mechanism of triggering breakdown becomes probably more significant than the cathode mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Dielectrics and Electrical Insulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.