Abstract

In recent years, intelligent fault diagnosis based on deep learning has achieved vigorous development thanks to its powerful feature representation ability. However, scarcity of high-quality data, especially samples under severe fault states, and variable operating conditions have limited the industrial application of intelligent fault diagnosis. To alleviate this predicament, a novel prior knowledge-embedded meta-transfer learning (PKEMTL) is proposed for few-shot fault diagnosis with limited training data and scarce test data. The method focuses on the problem of few-shot fault diagnosis under variable operating conditions to improve adaptability. Different from traditional models, the PKEMTL employs a metric-based meta-learning framework and embeds prior knowledge to enable cross-task learning under variable operating conditions. Specifically, order tracking is firstly introduced as preliminary prior information for data augmentation, and then the augmented data are divided into a series of meta-tasks. Secondly, the meta-tasks are performed by lightweight multiscale feature encoding to obtain high-level feature representations. Next, the meta-learning module based on diagnostic knowledge embedding guides the model to acquire meta-knowledge of speed generalization by constructing the self-supervised task to embed additional prior knowledge into the meta-training process. The generalization performance of the model is further improved by adaptive information fusion learning as a comprehensive decision-making module. Two case studies under variable operating conditions are implemented to validate the effectiveness and superiority of the proposed few-shot fault diagnosis method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.