Abstract

Device Technology Two-dimensional (2D) materials such as graphene and metal chalcogenides such as tungsten diselenide (WSe2) are attractive for use in low-cost thin-film transistors (TFTs) because they have high charge-carrier mobility. Kelly et al. printed TFTs from networks of exfoliated dispersions of 2D materials with graphene contacts, WSe2 as the semiconductor, and a boron nitride separator. Electrolytic gating with ionic liquids enabled higher operating currents than achieved with comparable organic TFTs. Science , this issue p. [69][1] [1]: /lookup/doi/10.1126/science.aal4062

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.