Abstract

The emerging request to reduce the environmental impact of plastics encourages scientists to use novel sustainable polymeric materials for many applications fields.The present paper aims to use for the first-time poly (butylene succinate) (PBS), a biodegradable and compostable polymer, for Selective Laser Sintering (SLS) applications. PBS is a flexible semicrystalline aliphatic polyester, which can represent a very good alternative to the traditional thermoplastic polymers obtained by fossil sources.The present work started from a lab-scale production of PBS powders by means of an emulsion solvent evaporation/precipitation method, with the purpose to increase the number of polymeric powders available for SLS. The obtained PBS powders were first characterized by morphological and thermal point of view, and then employed as innovative polymeric material in SLS to realized 3D printed parts with increasing geometrical complexity. To confirm PBS cytocompatibility, cell proliferation and cell viability assays (MTT and Live&Dead) were measured using a lung adenocarcinoma epithelial cell line (H1299). The in vitro cytotoxicity of the 3D printed material was also investigated, showing no harm on cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call